Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure
60 Pages Posted: 28 Nov 2004
Date Written: November 2004
Abstract
This paper presents a new approach to estimation and inference in panel data models with a multifactor error structure where the unobserved common factors are (possibly) correlated with exogenously given individual-specific regressors, and the factor loadings differ over the cross section units. The basic idea behind the proposed estimation procedure is to filter the individual-specific regressors by means of (weighted) cross-section aggregates such that asymptotically as the cross-section dimension (N) tends to infinity the differential effects of unobserved common factors are eliminated. The estimation procedure has the advantage that it can be computed by OLS applied to an auxiliary regression where the observed regressors are augmented by (weighted) cross sectional averages of the dependent variable and the individual specific regressors. Two different but related problems are addressed: one that concerns the coefficients of the individual-specific regressors, and the other that focusses on the mean of the individual coefficients assumed random. In both cases appropriate estimators, referred to as common correlated effects (CCE) estimators, are proposed and their asymptotic distribution as N with T (the time-series dimension) fixed or as N and T (jointly) are derived under different regularity conditions. One important feature of the proposed CCE mean group (CCEMG) estimator is its invariance to the (unknown but fixed) number of unobserved common factors as N and T (jointly). The small sample properties of the various pooled estimators are investigated by Monte Carlo experiments that confirm the theoretical derivations and show that the pooled estimators have generally satisfactory small sample properties even for relatively small values of N and T.
Keywords: cross section dependence, large panels, common correlated effects, heterogeneity, estimation and inference
JEL Classification: C12, C13, C33
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
A Simple Panel Unit Root Test in the Presence of Cross Section Dependence
-
A Panic Attack on Unit Roots and Cointegration
By Jushan Bai and Serena Ng
-
Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey
By Badi H. Baltagi and Chihwa Kao
-
Dynamic Panel Estimation and Homogeneity Testing Under Cross Section Dependence
By Peter C. B. Phillips and Donggyu Sul
-
Testing for a Unit Root in Panels with Dynamic Factors
By Hyungsik Roger Moon and Benoit Perron
-
Testing for a Unit Root in Panels with Dynamic Factors
By Hyungsik Roger Moon and Benoit Perron
-
General Diagnostic Tests for Cross Section Dependence in Panels
-
Modeling Regional Interdependencies Using a Global Vector Error-Correcting Macroeconometric Model
By M. Hashem Pesaran, Scott M. Weiner, ...