Location Choice in Two-Sided Markets with Indivisible Agents
29 Pages Posted: 11 Jan 2005
Date Written: January 2005
Abstract
Consider a model of location choice by two sorts of agents, called buyers and sellers: In the first period agents simultaneously choose between two identical possible locations; following this, the agents at each location play some sort of game with the other agents there. Buyers prefer locations with fewer other buyers and more sellers, and sellers have the reverse preferences. We study the set of possible equilibrium sizes for the two markets, and show that two markets of very different sizes can co-exist even if larger markets are more efficient. This extends the analysis of Ellison and Fudenberg [3] (EF), who ignored the constraint that the number of agents of each type in each market should be an integer, and instead analyzed the quasi-equilibria where agents are treated as infinitely divisible.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach
By Glenn Ellison and Edward L. Glaeser
-
Geographic Concentration as a Dynamic Process
By Guy Dumais, Glenn Ellison, ...
-
Testing for Localization Using Micro-Geographic Data
By Gilles Duranton and Henry G. Overman