The Impact of Incorporating the Cost of Errors into Bankruptcy Prediction Models

34 Pages Posted: 20 Jan 2005

See all articles by Lawrence A. Weiss

Lawrence A. Weiss

Tufts University - The Fletcher School

Vedran Capkun

HEC Paris - Accounting and Management Control Department

Date Written: March 14, 2005

Abstract

The current methodology to evaluate default and bankruptcy prediction models is to determine their precision - the percentage of firms predicted correctly. In this study we develop a framework for incorporating Type I (the amount lost from lending to a firm which goes bankrupt) and Type II (the opportunity cost of not lending to a firm which does not go bankrupt) error costs into the evaluation of prediction models. We then test this new framework by comparing the prediction model with a naive model of lending to all firms in the population based on the net profit each would generate. Our results indicate that prediction models can outperform naive models or other models only under certain conditions. This supports our hypothesis that the usefulness of prediction models cannot be fully assessed independently of the costs of forecast errors.

Keywords: Bankruptcy, bankruptcy prediction, default

JEL Classification: G33, G21

Suggested Citation

Weiss, Lawrence A. and Capkun, Vedran, The Impact of Incorporating the Cost of Errors into Bankruptcy Prediction Models (March 14, 2005). Available at SSRN: https://ssrn.com/abstract=651261 or http://dx.doi.org/10.2139/ssrn.651261

Lawrence A. Weiss (Contact Author)

Tufts University - The Fletcher School ( email )

160 Packard Ave
Medford, MA 02155
United States
6176272735 (Phone)
6176273712 (Fax)

Vedran Capkun

HEC Paris - Accounting and Management Control Department ( email )

Jouy-en-Josas Cedex
France

Here is the Coronavirus
related research on SSRN

Paper statistics

Downloads
352
Abstract Views
1,726
rank
87,830
PlumX Metrics