Nonstandard Quantile-Regression Inference
18 Pages Posted: 21 May 2007 Last revised: 4 Sep 2009
Abstract
It is well-known that conventional Wald-type inference in the context of quantile regression is complicated by the need to construct estimates of the conditional densities of the response variables at the quantile of interest. This note explores the possibility of circumventing the need to construct conditional density estimates in this context with scale statistics that are explicitly inconsistent for the underlying conditional densities. This method of Studentization leads conventional test statistics to have limiting distributions that are nonstandard but have the convenient feature of depending explicitly on the user's choice of smoothing parameter. These limiting distributions depend on the distribution of the conditioning variables but can be straightforwardly approximated by resampling.
Keywords: Quantile regression, hypothesis testing, bandwidth selection
JEL Classification: C12, C14, C21, C29
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Trends in U.S. Wage Inequality: Re-Assessing the Revisionists
By David H. Autor, Lawrence F. Katz, ...
-
Trends in U.S. Wage Inequality: Re-Assessing the Revisionists
By David H. Autor, Lawrence F. Katz, ...
-
Skill Biased Technological Change and Rising Wage Inequality: Some Problems and Puzzles
By David Card and John E. Dinardo
-
The Polarization of the U.S. Labor Market
By David H. Autor, Lawrence F. Katz, ...
-
Rising Wage Inequality: The Role of Composition and Prices
By David H. Autor, Lawrence F. Katz, ...
-
Rising Wage Inequality: The Role of Composition and Prices
By David H. Autor, Lawrence F. Katz, ...
-
Changes in the Labor Supply Behavior of Married Women: 1980-2000
By Francine D. Blau and Lawrence M. Kahn
-
Revisiting the German Wage Structure
By Christian Dustmann, Johannes Ludsteck, ...
-
Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure
By Joshua D. Angrist, Victor Chernozhukov, ...