Why Does Stock Market Volatility Change Over Time? A Time-Varying Variance Decomposition for Stock Returns
56 Pages Posted: 6 Mar 2005
Date Written: August 4, 2005
Abstract
We extend the variance decomposition model of Campbell (1991) to allow for time-varying stock market volatility. Specifically, we introduce a model in which the covariance matrix of the vector autoregression (VAR) follows a multivariate stochastic volatility (MSV) process. This VAR-MSV model permits the decomposition of unexpected real stock return variance into three time-varying components: variance of news about future dividends, variance of news about future returns, and a covariance term. We develop Bayesian Markov chain Monte Carlo (MCMC) econometric techniques for estimating the VAR-MSV model. These methods are well-suited for estimating models with latent stochastic volatilities, and are not subject to the small-sample biases and unit root problems that plague frequentist estimation of predictive regressions. We report strong evidence that real stock returns are predictable when the dividend-price ratio and a stochastically detrended short-term interest rate are employed as forecasting variables. The time-varying variance of news about future returns is the primary determinant of stock market volatility (both levels and changes). The variance of news about future dividends increased dramatically during the 1973-1974 recession and peaked during the 1980 recession before descending in the 1980s. However, its contribution to stock market volatility was offset by positive correlation between news about future dividends and news about future returns from 1974-1984.
Keywords: Variance decomposition, return predictability, vector autoregression, multivariate stochastic volatility, Markov chain Monte Carlo, Gibbs sampling
JEL Classification: G12, C11, C15, C32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Consumption, Aggregate Wealth and Expected Stock Returns
By Martin Lettau and Sydney C. Ludvigson
-
Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles
By Ravi Bansal and Amir Yaron
-
Dividend Yields and Expected Stock Returns: Alternative Procedures for Interference and Measurement
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia are Time-Varying
By Martin Lettau and Sydney C. Ludvigson
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia Wre Time-Varying
By Martin Lettau and Sydney C. Ludvigson