Robust Estimation of Dimension Reduction Space
CentER Discussion Paper No. 2005-31
25 Pages Posted: 21 Apr 2005
Date Written: February 2005
Abstract
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy-tailed distributions. We show that the recently proposed methods by Xia et al. (2002) can be made robust in such a way that preserves all advantages of the original approach. Their extension based on the local one-step M-estimators is sufficiently robust to outliers and data from heavy tailed distributions, it is relatively easy to implement, and surprisingly, it performs as well as the original methods when applied to normally distributed data.
Keywords: Dimension reduction, nonparametric regression, M-estimation
JEL Classification: C14, C20
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo