A Unified Approach to Nonlinearity, Structural Change, and Outliers
Econometric Institute Report EI 2005-09
37 Pages Posted: 24 Jan 2006
Date Written: March 2005
Abstract
This paper demonstrates that the class of conditionally linear and Gaussian state-space models offers a general and convenient framework for simultaneously handling nonlinearity, structural change and outliers in time series. Many popular nonlinear time series models, including threshold, smooth transition and Markov-Switching models, can be written in state-space form. It is then straightforward to add components that capture parameter instability and intervention effects. We advocate a Bayesian approach to estimation and inference, using an efficient implementation of Markov Chain Monte Carlo sampling schemes for such linear dynamic mixture models. The general modelling framework and the Bayesian methodology are illustrated by means of several examples. An application to quarterly industrial production growth rates for the G7 countries demonstrates the empirical usefulness of the approach.
Keywords: State-space models, Markov-switching models, Threshold models, Bayesian inference, Business cycle asymmetry
JEL Classification: C11, C22, E32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Forecasting Time Series Subject to Multiple Structural Breaks
By M. Hashem Pesaran, Davide Pettenuzzo, ...
-
Forecasting Time Series Subject to Multiple Structural Breaks
By M. Hashem Pesaran, Davide Pettenuzzo, ...
-
Are Apparent Findings of Nonlinearity Due to Structural Instability in Economic Time Series?
By Gary Koop and Simon Potter
-
Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models
By Paolo Giordani and Robert Kohn
-
Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts
-
Detecting and Predicting Forecast Breakdowns
By Raffaella Giacomini and Barbara Rossi
-
Forecasting with Small Macroeconomic VARs in the Presence of Instabilities
-
Forecasting and Estimating Multiple Change-Point Models with an Unknown Number of Change Points
By Simon Potter and Gary Koop