Implied Calibration and Moments Asymptotics in Stochastic Volatility Jump Diffusion Models
32 Pages Posted: 2 Nov 2005 Last revised: 18 Nov 2008
Date Written: April 16, 2008
Abstract
In the context of arbitrage-free modelling of financial derivatives, we introduce a novel calibration technique for models in the affine-quadratic class for the purpose of over-the-counter option pricing and risk-management. In particular, we aim at calibrating a stochastic volatility jump diffusion model to the whole market implied volatility surface at any given time. We study the asymptotic behaviour of the moments of the underlying distribution and use this information to introduce and implement our calibration algorithm. We numerically show that the proposed approach is both statistically stable and accurate.
Keywords: Affine-quadratic models, Option pricing, Model calibration
JEL Classification: G12, G13
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo