Panels with Nonstationary Multifactor Error Structures
34 Pages Posted: 17 Aug 2006
Date Written: August 2006
Abstract
The presence of cross-sectionally correlated error terms invalidates much inferential theory of panel data models. Recently work by Pesaran (2006) has suggested a method which makes use of cross-sectional averages to provide valid inference for stationary panel regressions with multifactor error structure. This paper extends this work and examines the important case where the unobserved common factors follow unit root processes and could be cointegrated. It is found that the presence of unit roots does not affect most theoretical results, which continue to hold irrespective of the integration and the cointegration properties of the unobserved factors. This finding is further supported for small samples via an extensive Monte Carlo study. In particular, the results of the Monte Carlo study suggest that the cross-sectional average based method is robust to a wide variety of data generation processes and has lower biases than all of the alternative estimation methods considered in the paper.
Keywords: cross section dependence, large panels, unit roots, principal components
JEL Classification: C12, C13, C33
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
A Simple Panel Unit Root Test in the Presence of Cross Section Dependence
-
A Panic Attack on Unit Roots and Cointegration
By Jushan Bai and Serena Ng
-
Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey
By Badi H. Baltagi and Chihwa Kao
-
Dynamic Panel Estimation and Homogeneity Testing Under Cross Section Dependence
By Peter C. B. Phillips and Donggyu Sul
-
Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure
-
Testing for a Unit Root in Panels with Dynamic Factors
By Hyungsik Roger Moon and Benoit Perron
-
Testing for a Unit Root in Panels with Dynamic Factors
By Hyungsik Roger Moon and Benoit Perron
-
General Diagnostic Tests for Cross Section Dependence in Panels