A Market Design for Grid Computing
INFORMS Journal on Computing, Forthcoming
30 Pages Posted: 30 Aug 2006
Abstract
Grid Computing uses software to integrate computing resources, such as CPU cycles, storage, network bandwidth, and even applications, across a distributed and heterogeneous set of networked computers. It is now widely deployed by organizations and provides seamless temporary processing capacity expansion to handle peak-period demand on e-commerce servers, distributed gaming, and content storage and distribution. We develop a market-based resource allocation model that adds an economic layer to the current approach of treating resource allocation as primarily a scheduling issue. We design a value elicitation and allocation scheme that provides the economic incentives for buyers and sellers of computing resources to exchange assets. We formulate the problem as a combinatorial call auction and present a portfolio of three solution approaches that trade off economic properties, such as allocative efficiency, incentive compatibility, and fairness in allocation, with computational efficiency. The first of these is an efficient solution that maximizes social welfare and yields incentive compatible Vickrey-Clarke-Groves prices, but requires the solving of multiple instances of an NP-hard problem. For markets where having a commodity price is critical, we show how the addition of fairness constraints to the efficient model can somewhat reduce the computational burden and yet preserve incentive compatibility. Finally, for markets that require real-time fast solution techniques, we propose a time sensitive fair Grid (tsfGRID) heuristic that relaxes the maximal allocation requirement of the welfare maximizing fair solution. Its solution is not guaranteed to be incentive compatible, but the heuristic is designed to be fast, maintain fairness in allocations, and yield commodity prices. Notably, while incentive compatibility is not guaranteed by tsfGRID, computational results comparing it with the efficient solution technique indicate that there are no significant differences in the expected revenue and operational allocative characteristics.
Keywords: Grid computing, combinatorial call auction, fair versus efficient allocation, social welfare, market design
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
An Empirical Analysis of Network Externalities in Peer-to-Peer Music Sharing Networks
By Atip Asvanund, Karen Clay, ...
-
The Economics of Peer-to-Peer Networks
By Ramayya Krishnan, Michael D. Smith, ...
-
Charismatic Code, Social Norms, and the Emergence of Cooperation on the File-Swapping Networks
-
Optimal Investment in Knowledge within a Firm Using a Market Mechanism
By Sulin Ba, Jan Stallaert, ...
-
Digital Business Models for Peer-to-Peer Networks: Analysis and Economic Issues
By Ramayya Krishnan, Michael D. Smith, ...
-
Peer-to-Peer File Sharing and the Market for Digital Information Goods
-
Free Riding on Altruism and Group Size
By Jean Hindriks and Romans Pancs
-
A Resource-Based Analysis of Peer-to-Peer Technology
By Oleg V. Pavlov and Khalid Saeed