Non-Parametric Risk Management and Implied Risk Aversion
49 Pages Posted: 2 Jun 1998
Date Written: January 4, 1998
Abstract
Typical value-at-risk (VaR) calculations involve the probabilities of extreme dollar losses, based on the statistical distributions of market prices. Such quantities do not account for the fact that the same dollar loss can have two very different economic valuations, depending on business conditions. We propose a nonparametric VaR measure that incorporates economic valuation according to the state-price density associated with the underlying price processes. The state-price density yields VaR values that are adjusted for risk aversion, time preferences, and other variations in economic valuation. In the context of a representative agent equilibrium model, we construct an estimator of the risk-aversion coefficient that is implied by the joint observations on the cross-section of option prices and time-series of underlying asset values.
JEL Classification: D81, G11
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo