Inference About Predictive Ability When There are Many Predictors
42 Pages Posted: 25 Apr 2007 Last revised: 12 Aug 2009
Date Written: January 1, 2007
Abstract
We enhance the theory of asymptotic inference about predictive ability by considering the case when a set of variables used to construct predictions is sizable. To this end, we consider an alternative asymptotic framework where the number of predictors tends to infinity with the sample size, although more slowly. Depending on the situation the asymptotic normal distribution of an average prediction criterion either gains additional variance as in the few predictors case, or gains non-zero bias which has no analogs in the few predictors case. By properly modifying conventional test statistics it is possible to remove most size distortions when there are many predictors, and improve test sizes even when there are few of them.
Keywords: Predictive ability, testing, t-statistic, asymptotic distribution, asymptotic variance, asymptotic bias, many predictors
JEL Classification: C13, C22, C52
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Tests of Equal Forecast Accuracy and Encompassing for Nested Models
-
Long Swings in the Exchange Rate: are They in the Data and Do Markets Know it?
-
Exchange Rates and Fundamentals
By Charles M. Engel and Kenneth D. West
-
Exchange Rates and Fundamentals
By Charles M. Engel and Kenneth D. West
-
Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive?
By Menzie David Chinn, Yin-wong Cheung, ...
-
Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?
By Lutz Kilian
-
Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive?
By Yin-wong Cheung, Menzie David Chinn, ...
