Computationally Efficient Recursions for Top-Order Invariant Polynomials with Applications
39 Pages Posted: 20 Mar 2007 Last revised: 1 Mar 2008
Abstract
The top-order zonal polynomials $C_{k}(A)$, and top-order invariant polynomials $C_{k_1,\ldots, k_r} (A_1,\ldots, A_r)$ in which each of the partitions of $k_i$, $i=1, \ldots, r$, has only one part, occur frequently in multivariate distribution theory, and econometrics - see, for example Phillips (1980, 1984, 1985, 1986), Hillier (1985, 2001), Hillier and Satchell (1986), and Smith (1989, 1993). However, even with the recursive algorithms of Ruben (1962) and Chikuse (1987), numerical evaluation of these invariant polynomials is extremely time consuming. As a result, the value of invariant polynomials has been largely confined to analytic work on distribution theory. In this paper we present new, very much more efficient, algorithms for computing both the top-order zonal and invariant polynomials. These results should make the theoretical results involving these functions much more valuable for direct practical study. We demonstrate the value of our results by providing fast and accurate algorithms for computing the moments of a ratio of quadratic forms in normal random variables.
Keywords: Invariant polynomials, quadratic form
JEL Classification: C10, C63
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Portfolio Selection and Asset Pricing Models
By Lubos Pastor
-
A Test for the Number of Factors in an Approximate Factor Model
-
Comparing Asset Pricing Models: an Investment Perspective
By Lubos Pastor and Robert F. Stambaugh
-
Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps
By Tongshu Ma and Ravi Jagannathan
-
On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model
By Louis K.c. Chan, Jason J. Karceski, ...
-
Honey, I Shrunk the Sample Covariance Matrix
By Olivier Ledoit and Michael Wolf
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach
By Lorenzo Garlappi, Tan Wang, ...
-
Portfolio Constraints and the Fundamental Law of Active Management