Dividend Yields and Expected Stock Returns: Alternative Procedures for Interference and Measurement
55 Pages Posted: 27 Jun 2007 Last revised: 19 Apr 2024
Date Written: July 1991
Abstract
Alternative ways of conducting inference and measurement for long-horizon forecasting are explored with an application to dividend yields as predictors of stock returns. Monte Carlo analysis indicates that the Hansen and Hodrick (1980) procedure is biased at long horizons, but the alternatives perform better. These include an estimator derived under the null hypothesis as in Richardson and Smith (1989), a reformulation of the regression as in Jegadeesh (1990), and a vector autoregression (VAR) as in Campbell and Shiller (1988), Kandel and Stambaugh (1988), and Campbell (1991). The statistical properties of long-horizon statistics generated from the VAR indicate interesting patterns in expected stock returns.
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Consumption, Aggregate Wealth and Expected Stock Returns
By Martin Lettau and Sydney C. Ludvigson
-
Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles
By Ravi Bansal and Amir Yaron
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia are Time-Varying
By Martin Lettau and Sydney C. Ludvigson
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia Wre Time-Varying
By Martin Lettau and Sydney C. Ludvigson