An Empirical Study of Multi-Objective Algorithms for Stock Ranking
Genetic Programming Theory and Practice, 2007
16 Pages Posted: 26 Jun 2007
Abstract
Quantitative models for stock selection and portfolio management face the challenge of determining the most efficacious factors, and how they interact, from large amounts of financial data. Genetic programming using "simple objective" fitness functions has been shown to be an effective technique for selecting factors and constructing multi-factor models for ranking stocks, but the resulted models can be somewhat unbalanced in satisfying the multiple objectives that portfolio managers seek: large excess returns that are consistent across time and the cross-sectional dimensions of the investment universe. In this study, we implement and evaluate three multi-objective algorithms to simultaneously optimize the information ratio, information coefficient, and intra-fractile hit rate of a portfolio. These algorithms - the constrained fitness function, sequential algorithm, and parallel algorithm - take widely different approaches to combine these different portfolio metrics. The results show that the multi-objective algorithms do produce well-balanced portfolio performance, with the constrained fitness function performing much better than the sequential and parallel multi-objective algorithms. Moreover, this algorithm generalizes to the held-out test data set much better than any of the single fitness algorithms.
Keywords: genetic programming, multi-objective algorithm, equity market, stock selection, quantitative asset management
JEL Classification: C63
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
By Richard M. Levich and Lee R. Thomas
-
Technical Trading Rule Profitability and Foreign Exchange Intervention
-
Technical Trading Rule Profitability and Foreign Exchange Intervention
-
By Andrew W. Lo, Harry Mamaysky, ...
-
Maximizing Predictability in the Stock and Bond Markets
By Andrew W. Lo and A. Craig Mackinlay
-
Do Momentum Based Strategies Still Work in Foreign Currency Markets?
By Derek R. White and John Okunev
