How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?
44 Pages Posted: 27 Jun 2007 Last revised: 2 Mar 2012
There are 2 versions of this paper
How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?
How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?
Date Written: April 1, 2007
Abstract
We provide an approach to forecasting the long-run (unconditional distribution of equity returns making optimal use of historical data in the presence of structural breaks. Our focus is on learning about breaks in real time and assessing their impact on out-of-sample density forecasts. Forecasts use a probability-weighted average of submodels, each of which is estimated over a different history of data. The paper illustrates the importance of uncertainty about structural breaks and the value of modeling higher-order moments of excess returns when forecasting the return distribution and its moments. The shape of the long-run distribution and the dynamics of the higher-order moments are quite different from those generated by forecasts which cannot capture structural breaks. The empirical results strongly reject ignoring structural change in favor of our forecasts which weight historical data to accommodate uncertainty about structural breaks. We also strongly reject the common practice of using a fixed-length moving window. These differences in long-run forecasts have implications for many financial decisions, particularly for risk management and long-run investment decisions.
Keywords: density forecasts, structural change, model risk, parameter uncertainty, Bayesian learning, market returns
JEL Classification: C1, C11, C5, C53, G1, G19
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Consumption, Aggregate Wealth and Expected Stock Returns
By Martin Lettau and Sydney C. Ludvigson
-
Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles
By Ravi Bansal and Amir Yaron
-
Dividend Yields and Expected Stock Returns: Alternative Procedures for Interference and Measurement
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia are Time-Varying
By Martin Lettau and Sydney C. Ludvigson
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Stock Return Predictability: Is it There?
By Geert Bekaert and Andrew Ang
-
Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia Wre Time-Varying
By Martin Lettau and Sydney C. Ludvigson