Large Time-Varying Parameter VARs
36 Pages Posted: 18 Mar 2012
Date Written: March 1, 2012
Abstract
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Keywords: Bayesian VAR, forecasting, time-varying coefficients, state-space model
JEL Classification: C11, C52, E27, E37
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Real-Time Inflation Forecasting in a Changing World
By Jan J. Groen, Richard Paap, ...
-
Bayesian Multivariate Time Series Methods for Empirical Macroeconomics
By Gary Koop and Dimitris Korobilis
-
Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns
By John Geweke and Gianni Amisano
-
Forecasting Inflation Using Dynamic Model Averaging
By Gary Koop and Dimitris Korobilis
-
Real-Time Density Forecasts from VARs with Stochastic Volatility
-
Assessing the Transmission of Monetary Policy Shocks Using Dynamic Factor Models
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...
-
Prior Selection for Vector Autoregressions
By Domenico Giannone, Michele Lenza, ...