header

Revealing the Atomistic Mechanisms of Strain Glass Transition in Ferroelastics

35 Pages Posted: 2 Mar 2020 First Look: Accepted

See all articles by Chuanxin Liang

Chuanxin Liang

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials

Dong Wang

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials

Zhao Wang

Guangxi University - Guangxi Key Laboratory for Relativistic Astrophysics

Xiangdong Ding

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials

Yunzhi Wang

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials

Abstract

As a new ferroelastic state, strain glass, has attracted a lot of recent attentions and, most importantly, strain glass transitions (SGTs) could underpin many phenomena that have puzzled the physics community for decades, including the quasi-linear superelasticity and Invar and Elinvar anomalies. However, there has been a lack of fundamental understanding at the atomistic level beyond the phenomenological Landau theory. In this paper, we propose a way to obtain quantitatively the continuous strain/stress fields distribution caused by doped point defects through molecular statics calculations by incorporating a Gaussian probability distribution function. By using the quantitative strain/stress fields distribution to inform phase field simulations, we reproduce quantitatively the experimentally observed critical defect concentrations separating the normal martensitic phase transition from strain glass transition at different temperatures and critical temperatures for spontaneous strain glass to martensitic transition at different defect concentrations. Based on percolation theory, we demonstrate how the strain network created by point defects with a critical concentration regulates nucleation and growth of martensitic domains, suppresses autocatalysis by strain frustration, and changes the sharp first-order martensitic transformation into a continuous SGT. A general temperature- and defect-concentration-dependent percolation criterion is formulated for accurate prediction of SGT, which could enable high throughput computations for systematic search of new strain glass systems using simply molecular static calculations.

Keywords: Phase field simulation, Molecular statics simulation, Multiscale simulation, Martensitic transformation, Strain glass transition

Suggested Citation

Liang, Chuanxin and Wang, Dong and Wang, Zhao and Ding, Xiangdong and Wang, Yunzhi, Revealing the Atomistic Mechanisms of Strain Glass Transition in Ferroelastics. Available at SSRN: https://ssrn.com/abstract=3542917 or http://dx.doi.org/10.2139/ssrn.3542917

Chuanxin Liang (Contact Author)

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials

26 Xianning W Rd.
Xi'an Jiao Tong University
Xi'an, Shaanxi 710049
China

Dong Wang

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials ( email )

26 Xianning W Rd.
Xi'an Jiao Tong University
Xi'an, Shaanxi 710049
China

Zhao Wang

Guangxi University - Guangxi Key Laboratory for Relativistic Astrophysics

Nanning, 530004
China

Xiangdong Ding

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials ( email )

26 Xianning W Rd.
Xi'an Jiao Tong University
Xi'an, Shaanxi 710049
China

Yunzhi Wang

Xi'an Jiaotong University (XJTU) - State Key Laboratory for Mechanical Behavior of Materials

26 Xianning W Rd.
Xi'an Jiao Tong University
Xi'an, Shaanxi 710049
China

Here is the Coronavirus
related research on SSRN

Paper statistics

Abstract Views
73
Downloads
7