Alscn-Based Quasi-Static Multi-Degree-Of-Freedom Piezoelectric Mems Micromirror with Large Mirror Plate and High Fill Factor
10 Pages Posted: 20 Apr 2024
Abstract
A quasi-static multi-degree-of-freedom piezoelectric MEMS micromirror with large mirror plate and high fill factor based on AlScN is presented. It consists of two individual components, namely the mirror plate and the actuator. They are fabricated separately and vertically assembled together to form the final combination. In current case, a square mirror plate with side length of 5 mm is used. The actuator is designed into a gimbal-less structure, which involves a central connection platform with a mounting hole and four groups of piezoelectric actuators that are connected to the platform's corners via serpentine springs. This configuration provides multi-degree-of-freedom driving capabilities, allowing tip-tilt-piston mirror movement. The piezoelectric actuator is composed of three-stage cantilever-type actuation units that are connected in series, and they are intentionally arranged into S-shape so as to be completely hidden beneath the mirror plate. Moreover, the driving performance is further improved by optimizing the electrode coverage region on each actuation unit. As a result, not only large displacement but also nearly 100% fill factor as well as high optical utilization efficiency can be achieved. From experimental results, the as-fabricated MEMS micromirror demonstrates static mechanical tilt angles of approximately ±2.2° about two orthogonal axes and piston vertical movement of ±54.9 μm within ±50VDC driving voltage range with excellent linearity.
Keywords: Micromirror, microelectromechanical systems (MEMS), Quasi-static actuators, Piezoelectric, AlScN
Suggested Citation: Suggested Citation