Deriving the Pricing Power of Product Features by Mining Consumer Reviews
Management Science, Forthcoming
36 Pages Posted: 27 Oct 2007 Last revised: 6 May 2011
Date Written: February 10, 2010
Abstract
Increasingly, user-generated product reviews serve as a valuable source of information for customers making product choices online. The existing literature typically incorporates the impact of product reviews on sales based on numeric variables representing the valence and volume of reviews. In this paper, we posit that the information embedded in product reviews cannot be captured by a single scalar value. Rather, we argue that product reviews are multifaceted and hence, the textual content of product reviews is an important determinant of consumers’ choices, over and above the valence and volume of reviews. To demonstrate this, we use text mining to incorporate review text in a consumer choice model by decomposing textual reviews into segments describing different product features. We estimate our model based on a unique dataset from Amazon, containing sales data and consumer review data for two different groups of products (digital cameras and camcorders) over a 15-month period. We alleviate the problems of data sparsity and of omitted variables by providing two experimental techniques: clustering rare textual opinions based on pointwise mutual information and using externally imposed review semantics. This paper demonstrates how textual data can be used to learn consumers’ relative preferences for different product features and, also, how text can be used for predictive modeling of future changes in sales.
Keywords: user-generated content, consumer reviews, e-commerce, econometrics, electronic markets, sentiment analysis, text mining
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Promotional Chat on the Internet
By Dina Mayzlin
-
The Effect of Word of Mouth on Sales: Online Book Reviews
By Judith A. Chevalier and Dina Mayzlin
-
The Effect of Word of Mouth on Sales: Online Book Reviews
By Judith A. Chevalier and Dina Mayzlin
-
Word-of-Mouth for Movies: Its Dynamics and Impact on Box Office Revenue
By Yong Liu
-
Do Online Reviews Matter? - an Empirical Investigation of Panel Data
By Wenjing Duan, Bin Gu, ...
-
Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms
-
Self Selection and Information Role of Online Product Reviews
By Xinxin Li and Lorin M. Hitt
-
By Chris Forman, Anindya Ghose, ...
-
By Michael Trusov, Randolph E. Bucklin, ...